Intramembrane proteolysis of Toxoplasma apical membrane antigen 1 facilitates host-cell invasion but is dispensable for replication.
نویسندگان
چکیده
Apical membrane antigen 1 (AMA1) is a conserved transmembrane adhesin of apicomplexan parasites that plays an important role in host-cell invasion. Toxoplasma gondii AMA1 (TgAMA1) is secreted onto the parasite surface and subsequently released by proteolytic cleavage within its transmembrane domain. To elucidate the function of TgAMA1 intramembrane proteolysis, we used a heterologous cleavage assay to characterize the determinants within the TgAMA1 transmembrane domain (ALIAGLAVGGVLLLALLGGGCYFA) that govern its processing. Quantitative analysis revealed that the TgAMA1(L/G) mutation enhanced cleavage by 13-fold compared with wild type. In contrast, the TgAMA1(AG/FF) mutation reduced cleavage by 30-fold, whereas the TgAMA1(GG/FF) mutation had a minor effect on proteolysis; mutating both motifs in a quadruple mutant blocked cleavage completely. We then complemented a TgAMA1 conditional knockout parasite line with plasmids expressing these TgAMA1 variants. Contrary to expectation, variants that increased or decreased TgAMA1 processing by >10-fold had no phenotypic consequences, revealing that the levels of rhomboid proteolysis in parasites are not delicately balanced. Only parasites transgenically expressing or carrying a true knock-in allele of the uncleavable TgAMA1(AG/FF+GG/FF) mutant showed a growth defect, which resulted from inhibiting invasion without perturbing intracellular replication. These data demonstrate that TgAMA1 cleavage plays a role in invasion, but refute a recently proposed model in which parasite replication within the host cell is regulated by intramembrane proteolysis of TgAMA1.
منابع مشابه
Intramembrane cleavage of AMA1 triggers Toxoplasma to switch from an invasive to a replicative mode.
Apicomplexan parasites invade host cells and immediately initiate cell division. The extracellular parasite discharges transmembrane proteins onto its surface to mediate motility and invasion. These are shed by intramembrane cleavage, a process associated with invasion but otherwise poorly understood. Functional analysis of Toxoplasma rhomboid 4, a surface intramembrane protease, by conditional...
متن کاملApical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion
Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface and actively sliding through the junction inside an intracellular vacuole. Apical membrane antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is considered to have multiple important roles during host cell penetration, primarily in structuring the junction by int...
متن کاملRhomboid 4 (ROM4) Affects the Processing of Surface Adhesins and Facilitates Host Cell Invasion by Toxoplasma gondii
Host cell attachment by Toxoplasma gondii is dependent on polarized secretion of apical adhesins released from the micronemes. Subsequent translocation of these adhesive complexes by an actin-myosin motor powers motility and host cell invasion. Invasion and motility are also accompanied by shedding of surface adhesins by intramembrane proteolysis. Several previous studies have implicated rhombo...
متن کاملIntramembrane cleavage of microneme proteins at the surface of the apicomplexan parasite Toxoplasma gondii.
Apicomplexan parasites actively secrete proteins at their apical pole as part of the host cell invasion process. The adhesive micronemal proteins are involved in the recognition of host cell receptors. Redistribution of these receptor-ligand complexes toward the posterior pole of the parasites is powered by the actomyosin system of the parasite and is presumed to drive parasite gliding motility...
متن کاملIntramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite
Apicomplexan pathogens are obligate intracellular parasites. To enter cells, they must bind with high affinity to host cell receptors and then uncouple these interactions to complete invasion. Merozoites of Plasmodium falciparum, the parasite responsible for the most dangerous form of malaria, invade erythrocytes using a family of adhesins called Duffy binding ligand-erythrocyte binding protein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 19 شماره
صفحات -
تاریخ انتشار 2012